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The vector and scalar potential formulation for three-dimensional laminar incompressible 
flow is examined. In problems with through-flow, it is shown that the scalar potential can 
introduce a spurious discontinuity into the boundary conditions. The result is unacceptable 
numerical errors. This is illustrated using, for simplicity, two-dimensional Stokes flows. Alter- 
native vector potential-vorticity formulations which eliminate this diff’culty are considered. 
li 1986 Academic Press. Inc 

1. INTR~DUCTJ~N 

To date, nearly all numerical three-dimensional incompressible flow calculations 
have used the primitive variables, i.e., have calculated the velocity and pressure 
directly, while the most popular approach for two-dimensional calculations is the 
streamfunction-vorticity formulation. The streamfunction has the important advan- 
tage that continuity is explicitly satisfied both globally and locally, whereas local 
continuity is implicit only using most pressure-velocity methods. Problems with 
continuity can arise when calculating the velocity directly. For example, the 
velocity-vorticity formulation of Dennis, Ingham, and Cook [ 1 ] encounters severe 
difficulties near a corner singularity (Tutty [2]). 

The vector potential-vorticity and scalar and vector potential-vorticity for- 
mulations are three-dimensional analogues of the streamfunction-vorticity method, 
and enforce local as well as global continuity. They have not been widely used 
because of their increased storage and computational requirements and, until recen- 
tly, uncertainty about suitable boundary conditions. Hirasaki and Hellums [3] 
were the first to present general boundary conditions for the vector potential. Their 
conditions are simple for flows with impermeable boundaries, but require the 
solution of partial differential equations on boundaries with through-flow. Hirasaki 
and Hellums [4] and Richardson and Cornish [S] introduce a scalar potential to 
the formulation, which simplifies the conditions for through-flow at the expense of a 
further variable. 

Unfortunately the scalar potential can introduce numerical errors near a sharp 
corner with through-flow, since, in general, there will be a discontinuity in its boun- 
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dary conditions at such a corner. With a finite-difference scheme, this discontinuity 
has an effect similar to that of resolving a Gibbs phenomenon with a finite number 
of Fourier components, and leads to nonphysical variations in the calculated values 
near the corner. Wong and Reizes [6] found such behaviour when calculating 
three-dimensional duct flows. 

In this paper, a number of scalar and vector potential formulations are con- 
sidered, and the effects of the discontinuity in the boundary conditions are 
demonstrated using, for simplicity, two-dimensional Stokes problems. In Section 2 
the equations are presented, Section 3 details the problems arising from the scalar 
potential, Section 4 presents alternative formulations, and the conclusions can be 
found in Section 5. 

Throughout this paper, unless specifically mentioned, standard central difference 
formulae and a square grid with h = l/16 are used in numerical calculations. 

2. THE STOKES EQUATIONS 

The Stokes equations, which govern the slow flow of a viscous incompressible 
fluid, are 

v.u=o, (2.1) 

v2u = vp, (2.2) 

where u = (t(, u, w) and p are the velocity vector and pressure. Taking the curl of 
(2.2) produces the vorticity transport equation 

V&=0 (2.3) 

where 

I;=vxu (2.4) 

is the vorticity vector. Using Helmholtz’s theorem, the velocity vector can be 
expressed in terms of a scalar potential 4 and a vector potential v as 

u=vq4+vxyl. (2.5) 

Without loss of generality, w can be made solenoidal, i.e., 

v.y=o. (2.6) 

Moreover, since u is itself solenoidal, C$ can be set identically zero while (2.6) will 
still hold. Substituting (2.5) in (2.1) gives 

V’b = 0, (2.7) 



370 O.R. TUTTY 

while taking the curl of (2.5) and using (2.6) yields 

v2tp = -6. (2.8) 

The boundary conditions for the potentials, from Hirasaki and Hellums [3] and 
Richardson and Cornish [S], are 

and 

(2.9) 

if the region is simply connected, where n, t, and r denote the normal and tangential 
components, and h,, h,, and h, are the appropriate scale factors. 

Only the normal component of velocity is used in the boundary conditions given 
above. The other two components will in general be used in calculating the tangen- 
tial vorticity on the boundary, for which either local (e.g., Mallinson and de Vahl 
Davis [ 73, Wong and Reizes [6]) or global (Quartapelle and Valz-Gris [S], 
Glowinski and Pironneau [9]) methods are available. 

3. DIFFICULTIES ASSOCIATED WITH THE SCALAR POTENTIAL 

Consider a right-angled corner formed by x >/ 0 and y > 0 with velocities u*(y) 
and ub(x) across x = 0 and y = 0, respectively, where (x, y, z) are Cartesian coor- 
dinates. From (2.9) 

a4 84 
ax=“” on x=0 and 

5=“” 
on y=O. 

Hence, unless 

the use of (2.9) will introduce a discontinuity into the problem for 4. This discon- 
tinuity may be spurious in the sense that it can arise with continuous, and indeed 
regular, flow fields (e.g., Poiseuille flow-see below). Clearly (3.1) will not be true in 
general. A condition similar to (3.1) must hold on any sharp corner if (2.9) is to be 
continuous. Note that (3.1) may be satisfied by boundary velocities that are discon- 
tinuous at x = y = 0, and that it does not necessarily imply c, = 0 at x = y = 0, as 
will be seen below. 
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Equation (3.1) requires the existence of the mixed derivative a”&& ay at the cor- 
ner point, and is a stronger condition than is formally required for the solution of 
the Neumann problem formed by (2.7) and (2.9). However, in the absence of a con- 
dition similar to (3.1), a numerical solution is unlikely to provide accurate values 
for C$ for the points near the corner. Moreover, as will be shown below, unless a 
very line grid is used near the corner, the violation of (3.1) can result in unaccep- 
table errors near the corner even with an accurate solution for 4. 

To illustrate the numerical effect of this discontinuity, several simple two-dimen- 
sional flows in the x-y plane will be considered: first, Poiseuille flow on a unit 
square, i.e., u = (U,(y), 0) where U, = y( 1 -JJ). The scalar potential, 4, $ = $=, and 
[= iZ are nonzero. A numerical solution was found with the square grid xi= ih, 
yj =jh; i,j= 0, l,..., N. All finite-difference equations in the interior of the region are 
obvious. For the boundary vorticity, Eqs. (2.5) and (2.8) produce, for example, 

il.0 = - C2$,l + 41+ 1.0 - 4i- I,011h2, i= 1, 2,..., N- 1 (3.2) 

on y = 0, where rjij = t&xi, li), etc. More complex formulae, such as those given by 
Wong and Reizes [6], could be used, but would not qualitatively affect the results 
presented in this paper. Note that, strictly, Helmholtz’s theorem (2.5) applies only 
in the interior of the region and not on the boundary. However, (3.2) can be 
obtained using (2.4) and (2.5) in the fluid near the boundary and taking the correct 
limit. In contrast, (2.5) and (2.8) do not in general give valid formulae at the cor- 
ners. For example, (2.8) and a$/ax = a$/ay = 0 (from u = u = 0 at (0,O)) yield 

io,o = -wfh,o + $0.1 - w0,01/~* (3.3a) 

which, with II/ = 0 on the boundaries, produces [ = 0 at (0,O). If instead the vor- 
ticity at (0, 0) is defined as 

then 

[o,o = lim ,-o+ g$w&o.“) 
i 

(3.3b) 

is obtained, where again @ = 0 on the boundaries has been used. For the present 
problem with Poiseuille flow, (3.3b) reduces to 

co.0 = - u;(o), 
which is the correct value. 

In a manner similar to that used to obtain (3.2), (2.7) and (2.9) yield finite- 
difference equations for the boundary values of 4. Alternatively, one-sided 0(/z*) 
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FIG. 1. Velocity and wall shear for Poiseuille flow 4 - $ - [ problem. Solid line: (u - UO( y)) x 2% 
y = h = l/16; long dashed line: v x 200, y = h = l/16; short dashed line: i3u/13y (= -[) at y = 0, h = l/16. 

differencing could be used with (2.9) alone. Both these methods were tried, with 
similar results. All results presented below use the former method. 

Figure 1 gives the velocity near the wall and the wall shear. Near the corners, 
there is an unreasonable variation in these results, with the wall shear showing a 
marked decrease. Wong and Reizes [6] argued that these unacceptable results are 
due to a failure of the velocity from the scalar potential to satisfy locally a difference 
form of the continuity equation. This argument appears to be in direct conflict with 
a basic strength of the scalar and vector potential method, i.e., that the continuity 
equation-(2.7)-is satisfied identically at every point in the grid. Wong and Reizes 
considered a cell with sides a distance h (i.e., one grid step) away from the centre 
point, and found that the net flow into this cell is small but not, in general, zero. 
Instead, consider a cell with sides a distance h/2 from the centre point. Calculating 
the velocity at the midpoints of the cell walls and substituting in the finite-difference 
form of (2.1) gives 

(3.4) 

which is the standard finite-difference form of (2.7). Hence the continuity equation 
(2.1) is satisfied locally as well as globally by the potential flow given by 4. Simple 
arithmetic means-a process which is O(h2) accurate-can be used to obtain values 
of $ at the corners of the (later) cell, and the velocity so obtained at the midpoints 
of the cell walls satisfies the difference form of (2.1) identically. Therefore the 
velocity distribution obtained from (2.5) satisfies continuity locally as well as 
globally. 

It is interesting to consider the analytic solution for 4 for this problem. 

+b = a,x + f [anennX + b,ep”““] cos(my) (3.5) 
n=l 
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FIG. 2. Axial velocity u for entry flow (y=h= l/16). Solid line: from the $-[ problem with (4.1) 
and (4.3); dotted line: from the Stokes expansion (4.5). 

satisfies (2.7) and (2.9) on y = 0 and 1. The solution is completed by (2.9) at x = 0 
and 1 and the cosine series for V,,(y). However, to obtain accurate values from 
(3.5), enough terms must be used to resolve the Gibbs phenomenon arising from 
the discontinuity of the derivative at the corners. Numerically this is equivalent to 
using sufficient points in y. 

The calculation for $ and { was repeated using highly accurate values of 4 
obtained from (3.5). There was no significant improvement in the results. In par- 
ticular, the wall shear was close to that shown in Fig. 1. Hence, obtaining accurate 
values for 4 is not sufficient to ensure an accurate solution for the basic flow 
problem. 
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FIG. 3. Transverse velocity u for entry flow (y = h = l/16). Solid line: from the I++ - [ problem with 
(4.1) and (4.3); dotted line: from the Stokes expansion (4.6). 
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FIG. 4. Wall shear for entry flow (y = 0, h = l/16). Solid line: from the li, - 5 problem with (4.1) and 
(4.3); dashed line: from the 4 - (i, - [ problem with (3.2); dotted line: from the Stokes expansion (4.8). 

A second problem is that of entry flow into a channel of width one (the two- 
dimensional Stokes version of the duct flow problem considered by Aregbesola and 
Burley [lo] and Wong and Reizes [6]). If the entry profile is uniform with zero 
transverse velocity (i.e., u = (LO) at x = 0), then (3.1) is satisfied and the scalar-vec- 
tor potential method might be expected to give good results at the inlet, but poor 
results near the walls at the outlet if Poiseuille flow (6U,(y)) is assumed there. 
First, however, there is another difhculty in calculating the scalar potential for 
this problem. Equations (2.7) and (2.9) provide one difference equation for each 
grid point, but this system is not independent (if it were it would violate the non- 
uniqueness of the Neumann problem). Moreover, an independent system of tinite- 
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FIG. 5. Streamfunction for entry flow (y = h = l/16). Solid line: from the $I -c problem with (4.1) 
and (4.3); dotted line: from the Stokes expansion (4.4). 
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FIG. 6. Centre line velocity u (y = l/2, h = l/16). Solid line: from the $-c problem with (4.1) and 
(4.3). 

difference equations may not be consistent with the prescribed boundary con- 
ditions, except in a limiting sense. For example, for a cuboid or rectangle with a 
rectangular grid, suppose that (2.7) is used at each interior point and (2.7) and 
(2.9) at all except one boundary point, with standard 0(/r*) central differences used 
in the interior and formulae similar to (3.2) on the boundaries. Then it can be 
shown that the velocity implied at the other boundary point is such that trapezoidal 
rule integration over the surface will give zero net flow into the region. In par- 
ticular, with the entry flow, suppose that I,,, is fixed, and that u = (1,0) at (0, 1). 
The trapezoidal rule has a nonzero error for Poiseuille flow, hence the numerical 
solution will not have u = (LO) at (0, 0), and will not be symmetric. If symmetry is 
used explicitly the implied velocity at (0,O) will not give a uniform inlet profile. 
Note (i) the velocity tends to uniform as the step length decreases and (ii) a slip 
velocity at the wall (or a suitable scaling of the velocity at the outlet) could be used 
to force u = ( 1,O) at (0, 0). 

Calculations were performed (with a slip velocity) for a channel with xmax = 2, 
which allowed the flow to develop fully. As expected, there is a kink in the results 
near the outlet similar to that for the Poiseuille flow. Figures 2-5 show various 
results near the inlet. The wall shear appears (as would be hoped) to be singular as 
x -+ 0 + (Fig. 4). By using both @/ax = 1 and u = 0 at (0, 0), the difference form of 
(2.8) yields [o,0 = -2/h, which is consistent with the calculated values for the wall 
shear. Note that (2.8) can be used here as a*#lax 8~ exists at the corner. 

4. ALTERNATIVE FORMULATIONS 

Since the difficulties described in Section 3 arise from the scalar potential, it 
would be useful to eliminate it from the problem. This should also have storage and 
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computational advantages. Hirasaki and Hellums [3] use only the vector potential, 
but on each boundary with through-flow they require the solution of a partial dif- 
ferential equation to determine the conditions on w. If the velocity normal to the 
boundaries is known a priori, these equations could be solved independently of the 
internal calculation. For two-dimensional problems, this formulation reduces to the 
“standard”, streamfunction-vorticity problem. 

Fortunately the conditions can be simplified on at least some of the boundaries 
by a straightforward modification of the Hirasaki and Hellums [3] formulation. 
Instead of (2.5) let u be 

u=us+Vx~, (4.1) 

where u, is necessarily solenoidal. Also, without loss of generality, let w be 
solenoidal. Taking the curl of (4.1) and using (2.6) gives 

v2yl= -~+Vxu, (4.2) 

in place of (2.8). If the normal component of u, is the normal velocity on a boun- 
dary, (2.10) applies on that boundary. In practice, the choice of u, will depend on 
the problem. For example, for the flow through a cuboid with known normal boun- 
dary velocities, (2.10) could be used on at least three of the boundaries. Note that a 
solenoidal vector can be formed on a planar boundary by taking only the velocity 
normal to the boundary. 

Wong and Reizes [6] present a formulation which is similar to the above, but 
with u, irrotational as well as solenoidal. For their duct problem there was an 
obvious choice for II,, but, in general, it may not be a simple task to find an 
appropriate irrotational flow. Further, a potential u, that will introduce (2.10) may 
not give a satisfactory solution, and, in fact, may itself explicitly introduce the dis- 
continuity and the resulting errors. For example, in the Poiseuille flow problem of 
Section 3, taking u, from the divergence of the scalar potential (3.5)-or 
equivalently performing a 4 - $ - [ calculation with analytic 4 from (3.5)-does 
not give accurate values near the corners. In contrast, u, = ( U0 + x2, -xCrO) is 
irrotational and introduces (2.10) on x = 0 (although not on y = 0 and l), and 
numerically gives the exact solution rc/ = - +x2Ub. However, if the requirement that 
u, be irrotational is dropped, the solution comes out simply as u, = ( UO, 0) and 
* =o. 

Consider now the entry flow problem of Section 3. The “modified” problem with 
(4.1) and u, = (LO) and the standard $ - [ problem produce identical results. As 
expected, the solution with formulae similar to (3.2) on the boundaries is very close 
to that with the scalar potential over most of the grid. Near the outlet it is much 
improved, although there is still an error-less than 1% in the vorticity- due to 
the O(h) accuracy of (3.2). Woods’ [Ill] 0(/r*) formula, e.g., 
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yields the correct solution downstream (to seven significant figures in the stream- 
function and five in the vorticity). Figures 2-6 display various results. Except for the 
wall shear (Fig. 4), the values from the 4 - $ - [ and t++ - [ calculations with (3.2) 
are omitted as, over the range shown, they are graphically identical to the values 
from $ - c with (4.3). The major difference between the values with (3.2) and those 
with (4.3) is in the vorticity near the inlet, (4.3) giving a much sharper rise as 
x + O+. Equation (4.3) is valid at (0, 0), and with tiO,, = h produces &,0 = - 56.2. 
Again this is consistent with the calculated values for the wall shear for x > 0 
(Fig. 4). The apparent kink in u for y = f near the outlet with the “exact” 
downstream solution (see Fig. 6) comes from the 0(/r’) error in the standard cen- 
tral difference approximation for a/+, and can be removed by using a more 
accurate difference formula (e.g., of O(h4)) for a/& when calculating u from $. 

Near the corner, the leading term of the Stokes expansion is 

*=kr[OcosO+(qnl)anB]. (4.4) 

where k = 4/( 7c2 - 4), (r, 0) are standard polar coordinates with origin x = y = 0 and 
19 = 0 the positive x-axis, and r $1 (Moffatt [ 121, Gupta, Manohar, and Noble 
[13]). From (4.4), the Cartesian velocity components and the vorticity are 

(4.5) u=ik :(20+sinZ)-f+cos28 , 
1 

o=ik 2H-sin20-q(l -cos28) 
1 1 , (4.6) 

and 

[= -t 
[ 
%(ZcosO-sine)-sin0 , 1 (4.7) 

TABLE I 

Transverse Velocity on y = h = l/16 for Entry Flow 

Percentage difference 

x “, “!I Ud 4s 4s nld 

h 0.3407 0.2606 0.2766 -23.5 - 18.8 - 5.8 
2h 0.1707 0.1871 0.1869 9.6 9.5 0.1 
3h 0.09222 0.1032 0.09910 11.9 7.5 4.1 
4h 0.05637 0.05577 0.05915 -1.1 4.9 -5.7 

Note. u, is from (4.6), u,, from the numerical solution of IL-[ with (4.3), and ud is from (4.4) and 
central differences. n/s denotes (v,/v, - 1) x 100, etc. 
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TABLE II 

Entry Flow Streamfunction for y = h = l/16 

x dJe % difference 

h 0.04341 0.04491 3.4 
2h 0.02792 0.02993 7.2 
3h 0.02005 0.02152 7.3 
4h 0.01554 0.01102 9.5 

Nofe. (I$ is from (4.4), rl/, is from the numerical solution of $ - < with (4.3), and 
the difference is ($,/$,- 1) x 100. 

respectively. Along the lower wall (6 = 0) (4.7) gives 

( = _ kn/r. (4.8) 

Near the corner, the streamfunction and voriticity from the numerical solution have 
the behaviour predicted by (4.4) and (4.8) (see Figs. 4 and 5), but the velocity 
shows a large difference (Figs. 2 and 3). Most of this is from the error in the dif- 
ference formla used to calculate the velocities, as can be seen from Table I (u shows 
a similar pattern). For comparison, Table II gives values of $. 

The numerical solutions were calculated using an AD1 method. Convergence was 
extremely slow for 4 because of the derivative boundary conditions. For the entry 
problem, 4 needed approximately 10,700 complete sweeps to converge (i.e., for the 
sum of the changes to be less than 1O-6 in a single sweep), while the $ - 5 part of 
the problem converged in 122 complete sweeps. Thus nearly all the computational 
effort was in finding 4. With (3.2), the standard and modified problems took 137 
and 122 complete sweeps respectively. This is approximately 1/40th of the com- 
putational effort required for the 4 - II/ - [ problem. With the Woods formula, 278 
and 265 sweeps were needed for the standard and modified $ -i problems. No 
attempt was made to optimize the rate of convergence. 

5. CONCLUSIONS 

The discontinuity in the boundary conditions for the scalar potential which can 
occur at a sharp corner may have an unacceptable effect on numerical calculations. 
This has been illustrated using simple two-dimensional Stokes flows. It is stressed 
that these effects will occur in more complex three-dimensional flows, including 
steady and unsteady Navier-Stokes calculations. Indeed, they were first observed 
by the present author in a three-dimensional study, the results of which will be 
published elsewhere. 
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Concerning the discontinuity: 

(i) it is local in effect; 
(ii) it is grid dependent, and its effect will be reduced but not eliminated by 

decreasing the grid step; 
(iii) continuous boundary conditions can be achieved when there is a discon- 

tinuity in the flow, and the scalar potential might be of use in such problems; 
(iv) using an analytic or an accurate numerical scalar potential/potential 

velocity will not necessarily produce an accurate solution. 

If the scalar potential is dropped from the problem, Hirasaki and Hellums [3] 
give a general formulation, for which (4.1) provides a useful simplification. 
Although this formulation may require the solution of partial differential equations 
on the boundaries, it is possible that the end result will be less computational effort, 
because of the slow convergence of the Neumann problem for the scalar potential. 

Finally, if an accurate vector potential is found numerically, the standard central 
difference formula may not give sulliciently accurate values for the velocity. This 
might have serious consequences in Navier-Stokes calculations where the velocity is 
explicitly required in the vorticity transport equations. 
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